3.682 \(\int \frac {\cos ^7(c+d x) \sin (c+d x)}{a+a \sin (c+d x)} \, dx\)

Optimal. Leaf size=73 \[ -\frac {\sin ^7(c+d x)}{7 a d}+\frac {2 \sin ^5(c+d x)}{5 a d}-\frac {\sin ^3(c+d x)}{3 a d}-\frac {\cos ^6(c+d x)}{6 a d} \]

[Out]

-1/6*cos(d*x+c)^6/a/d-1/3*sin(d*x+c)^3/a/d+2/5*sin(d*x+c)^5/a/d-1/7*sin(d*x+c)^7/a/d

________________________________________________________________________________________

Rubi [A]  time = 0.11, antiderivative size = 73, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.185, Rules used = {2835, 2565, 30, 2564, 270} \[ -\frac {\sin ^7(c+d x)}{7 a d}+\frac {2 \sin ^5(c+d x)}{5 a d}-\frac {\sin ^3(c+d x)}{3 a d}-\frac {\cos ^6(c+d x)}{6 a d} \]

Antiderivative was successfully verified.

[In]

Int[(Cos[c + d*x]^7*Sin[c + d*x])/(a + a*Sin[c + d*x]),x]

[Out]

-Cos[c + d*x]^6/(6*a*d) - Sin[c + d*x]^3/(3*a*d) + (2*Sin[c + d*x]^5)/(5*a*d) - Sin[c + d*x]^7/(7*a*d)

Rule 30

Int[(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)/(m + 1), x] /; FreeQ[m, x] && NeQ[m, -1]

Rule 270

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*(a + b*x^n)^p,
 x], x] /; FreeQ[{a, b, c, m, n}, x] && IGtQ[p, 0]

Rule 2564

Int[cos[(e_.) + (f_.)*(x_)]^(n_.)*((a_.)*sin[(e_.) + (f_.)*(x_)])^(m_.), x_Symbol] :> Dist[1/(a*f), Subst[Int[
x^m*(1 - x^2/a^2)^((n - 1)/2), x], x, a*Sin[e + f*x]], x] /; FreeQ[{a, e, f, m}, x] && IntegerQ[(n - 1)/2] &&
 !(IntegerQ[(m - 1)/2] && LtQ[0, m, n])

Rule 2565

Int[(cos[(e_.) + (f_.)*(x_)]*(a_.))^(m_.)*sin[(e_.) + (f_.)*(x_)]^(n_.), x_Symbol] :> -Dist[(a*f)^(-1), Subst[
Int[x^m*(1 - x^2/a^2)^((n - 1)/2), x], x, a*Cos[e + f*x]], x] /; FreeQ[{a, e, f, m}, x] && IntegerQ[(n - 1)/2]
 &&  !(IntegerQ[(m - 1)/2] && GtQ[m, 0] && LeQ[m, n])

Rule 2835

Int[(cos[(e_.) + (f_.)*(x_)]^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.))/((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]
), x_Symbol] :> Dist[1/a, Int[Cos[e + f*x]^(p - 2)*(d*Sin[e + f*x])^n, x], x] - Dist[1/(b*d), Int[Cos[e + f*x]
^(p - 2)*(d*Sin[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n, p}, x] && IntegerQ[(p - 1)/2] && EqQ[a^2
 - b^2, 0] && IntegerQ[n] && (LtQ[0, n, (p + 1)/2] || (LeQ[p, -n] && LtQ[-n, 2*p - 3]) || (GtQ[n, 0] && LeQ[n,
 -p]))

Rubi steps

\begin {align*} \int \frac {\cos ^7(c+d x) \sin (c+d x)}{a+a \sin (c+d x)} \, dx &=\frac {\int \cos ^5(c+d x) \sin (c+d x) \, dx}{a}-\frac {\int \cos ^5(c+d x) \sin ^2(c+d x) \, dx}{a}\\ &=-\frac {\operatorname {Subst}\left (\int x^5 \, dx,x,\cos (c+d x)\right )}{a d}-\frac {\operatorname {Subst}\left (\int x^2 \left (1-x^2\right )^2 \, dx,x,\sin (c+d x)\right )}{a d}\\ &=-\frac {\cos ^6(c+d x)}{6 a d}-\frac {\operatorname {Subst}\left (\int \left (x^2-2 x^4+x^6\right ) \, dx,x,\sin (c+d x)\right )}{a d}\\ &=-\frac {\cos ^6(c+d x)}{6 a d}-\frac {\sin ^3(c+d x)}{3 a d}+\frac {2 \sin ^5(c+d x)}{5 a d}-\frac {\sin ^7(c+d x)}{7 a d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.26, size = 68, normalized size = 0.93 \[ \frac {\sin ^2(c+d x) \left (-30 \sin ^5(c+d x)+35 \sin ^4(c+d x)+84 \sin ^3(c+d x)-105 \sin ^2(c+d x)-70 \sin (c+d x)+105\right )}{210 a d} \]

Antiderivative was successfully verified.

[In]

Integrate[(Cos[c + d*x]^7*Sin[c + d*x])/(a + a*Sin[c + d*x]),x]

[Out]

(Sin[c + d*x]^2*(105 - 70*Sin[c + d*x] - 105*Sin[c + d*x]^2 + 84*Sin[c + d*x]^3 + 35*Sin[c + d*x]^4 - 30*Sin[c
 + d*x]^5))/(210*a*d)

________________________________________________________________________________________

fricas [A]  time = 0.45, size = 59, normalized size = 0.81 \[ -\frac {35 \, \cos \left (d x + c\right )^{6} - 2 \, {\left (15 \, \cos \left (d x + c\right )^{6} - 3 \, \cos \left (d x + c\right )^{4} - 4 \, \cos \left (d x + c\right )^{2} - 8\right )} \sin \left (d x + c\right )}{210 \, a d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^7*sin(d*x+c)/(a+a*sin(d*x+c)),x, algorithm="fricas")

[Out]

-1/210*(35*cos(d*x + c)^6 - 2*(15*cos(d*x + c)^6 - 3*cos(d*x + c)^4 - 4*cos(d*x + c)^2 - 8)*sin(d*x + c))/(a*d
)

________________________________________________________________________________________

giac [A]  time = 0.17, size = 69, normalized size = 0.95 \[ -\frac {30 \, \sin \left (d x + c\right )^{7} - 35 \, \sin \left (d x + c\right )^{6} - 84 \, \sin \left (d x + c\right )^{5} + 105 \, \sin \left (d x + c\right )^{4} + 70 \, \sin \left (d x + c\right )^{3} - 105 \, \sin \left (d x + c\right )^{2}}{210 \, a d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^7*sin(d*x+c)/(a+a*sin(d*x+c)),x, algorithm="giac")

[Out]

-1/210*(30*sin(d*x + c)^7 - 35*sin(d*x + c)^6 - 84*sin(d*x + c)^5 + 105*sin(d*x + c)^4 + 70*sin(d*x + c)^3 - 1
05*sin(d*x + c)^2)/(a*d)

________________________________________________________________________________________

maple [A]  time = 0.19, size = 69, normalized size = 0.95 \[ \frac {-\frac {\left (\sin ^{7}\left (d x +c \right )\right )}{7}+\frac {\left (\sin ^{6}\left (d x +c \right )\right )}{6}+\frac {2 \left (\sin ^{5}\left (d x +c \right )\right )}{5}-\frac {\left (\sin ^{4}\left (d x +c \right )\right )}{2}-\frac {\left (\sin ^{3}\left (d x +c \right )\right )}{3}+\frac {\left (\sin ^{2}\left (d x +c \right )\right )}{2}}{d a} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^7*sin(d*x+c)/(a+a*sin(d*x+c)),x)

[Out]

1/d/a*(-1/7*sin(d*x+c)^7+1/6*sin(d*x+c)^6+2/5*sin(d*x+c)^5-1/2*sin(d*x+c)^4-1/3*sin(d*x+c)^3+1/2*sin(d*x+c)^2)

________________________________________________________________________________________

maxima [A]  time = 0.33, size = 69, normalized size = 0.95 \[ -\frac {30 \, \sin \left (d x + c\right )^{7} - 35 \, \sin \left (d x + c\right )^{6} - 84 \, \sin \left (d x + c\right )^{5} + 105 \, \sin \left (d x + c\right )^{4} + 70 \, \sin \left (d x + c\right )^{3} - 105 \, \sin \left (d x + c\right )^{2}}{210 \, a d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^7*sin(d*x+c)/(a+a*sin(d*x+c)),x, algorithm="maxima")

[Out]

-1/210*(30*sin(d*x + c)^7 - 35*sin(d*x + c)^6 - 84*sin(d*x + c)^5 + 105*sin(d*x + c)^4 + 70*sin(d*x + c)^3 - 1
05*sin(d*x + c)^2)/(a*d)

________________________________________________________________________________________

mupad [B]  time = 9.13, size = 83, normalized size = 1.14 \[ \frac {\frac {{\sin \left (c+d\,x\right )}^2}{2\,a}-\frac {{\sin \left (c+d\,x\right )}^3}{3\,a}-\frac {{\sin \left (c+d\,x\right )}^4}{2\,a}+\frac {2\,{\sin \left (c+d\,x\right )}^5}{5\,a}+\frac {{\sin \left (c+d\,x\right )}^6}{6\,a}-\frac {{\sin \left (c+d\,x\right )}^7}{7\,a}}{d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((cos(c + d*x)^7*sin(c + d*x))/(a + a*sin(c + d*x)),x)

[Out]

(sin(c + d*x)^2/(2*a) - sin(c + d*x)^3/(3*a) - sin(c + d*x)^4/(2*a) + (2*sin(c + d*x)^5)/(5*a) + sin(c + d*x)^
6/(6*a) - sin(c + d*x)^7/(7*a))/d

________________________________________________________________________________________

sympy [A]  time = 76.74, size = 1530, normalized size = 20.96 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**7*sin(d*x+c)/(a+a*sin(d*x+c)),x)

[Out]

Piecewise((210*tan(c/2 + d*x/2)**12/(105*a*d*tan(c/2 + d*x/2)**14 + 735*a*d*tan(c/2 + d*x/2)**12 + 2205*a*d*ta
n(c/2 + d*x/2)**10 + 3675*a*d*tan(c/2 + d*x/2)**8 + 3675*a*d*tan(c/2 + d*x/2)**6 + 2205*a*d*tan(c/2 + d*x/2)**
4 + 735*a*d*tan(c/2 + d*x/2)**2 + 105*a*d) - 280*tan(c/2 + d*x/2)**11/(105*a*d*tan(c/2 + d*x/2)**14 + 735*a*d*
tan(c/2 + d*x/2)**12 + 2205*a*d*tan(c/2 + d*x/2)**10 + 3675*a*d*tan(c/2 + d*x/2)**8 + 3675*a*d*tan(c/2 + d*x/2
)**6 + 2205*a*d*tan(c/2 + d*x/2)**4 + 735*a*d*tan(c/2 + d*x/2)**2 + 105*a*d) + 210*tan(c/2 + d*x/2)**10/(105*a
*d*tan(c/2 + d*x/2)**14 + 735*a*d*tan(c/2 + d*x/2)**12 + 2205*a*d*tan(c/2 + d*x/2)**10 + 3675*a*d*tan(c/2 + d*
x/2)**8 + 3675*a*d*tan(c/2 + d*x/2)**6 + 2205*a*d*tan(c/2 + d*x/2)**4 + 735*a*d*tan(c/2 + d*x/2)**2 + 105*a*d)
 + 224*tan(c/2 + d*x/2)**9/(105*a*d*tan(c/2 + d*x/2)**14 + 735*a*d*tan(c/2 + d*x/2)**12 + 2205*a*d*tan(c/2 + d
*x/2)**10 + 3675*a*d*tan(c/2 + d*x/2)**8 + 3675*a*d*tan(c/2 + d*x/2)**6 + 2205*a*d*tan(c/2 + d*x/2)**4 + 735*a
*d*tan(c/2 + d*x/2)**2 + 105*a*d) + 700*tan(c/2 + d*x/2)**8/(105*a*d*tan(c/2 + d*x/2)**14 + 735*a*d*tan(c/2 +
d*x/2)**12 + 2205*a*d*tan(c/2 + d*x/2)**10 + 3675*a*d*tan(c/2 + d*x/2)**8 + 3675*a*d*tan(c/2 + d*x/2)**6 + 220
5*a*d*tan(c/2 + d*x/2)**4 + 735*a*d*tan(c/2 + d*x/2)**2 + 105*a*d) - 912*tan(c/2 + d*x/2)**7/(105*a*d*tan(c/2
+ d*x/2)**14 + 735*a*d*tan(c/2 + d*x/2)**12 + 2205*a*d*tan(c/2 + d*x/2)**10 + 3675*a*d*tan(c/2 + d*x/2)**8 + 3
675*a*d*tan(c/2 + d*x/2)**6 + 2205*a*d*tan(c/2 + d*x/2)**4 + 735*a*d*tan(c/2 + d*x/2)**2 + 105*a*d) + 700*tan(
c/2 + d*x/2)**6/(105*a*d*tan(c/2 + d*x/2)**14 + 735*a*d*tan(c/2 + d*x/2)**12 + 2205*a*d*tan(c/2 + d*x/2)**10 +
 3675*a*d*tan(c/2 + d*x/2)**8 + 3675*a*d*tan(c/2 + d*x/2)**6 + 2205*a*d*tan(c/2 + d*x/2)**4 + 735*a*d*tan(c/2
+ d*x/2)**2 + 105*a*d) + 224*tan(c/2 + d*x/2)**5/(105*a*d*tan(c/2 + d*x/2)**14 + 735*a*d*tan(c/2 + d*x/2)**12
+ 2205*a*d*tan(c/2 + d*x/2)**10 + 3675*a*d*tan(c/2 + d*x/2)**8 + 3675*a*d*tan(c/2 + d*x/2)**6 + 2205*a*d*tan(c
/2 + d*x/2)**4 + 735*a*d*tan(c/2 + d*x/2)**2 + 105*a*d) + 210*tan(c/2 + d*x/2)**4/(105*a*d*tan(c/2 + d*x/2)**1
4 + 735*a*d*tan(c/2 + d*x/2)**12 + 2205*a*d*tan(c/2 + d*x/2)**10 + 3675*a*d*tan(c/2 + d*x/2)**8 + 3675*a*d*tan
(c/2 + d*x/2)**6 + 2205*a*d*tan(c/2 + d*x/2)**4 + 735*a*d*tan(c/2 + d*x/2)**2 + 105*a*d) - 280*tan(c/2 + d*x/2
)**3/(105*a*d*tan(c/2 + d*x/2)**14 + 735*a*d*tan(c/2 + d*x/2)**12 + 2205*a*d*tan(c/2 + d*x/2)**10 + 3675*a*d*t
an(c/2 + d*x/2)**8 + 3675*a*d*tan(c/2 + d*x/2)**6 + 2205*a*d*tan(c/2 + d*x/2)**4 + 735*a*d*tan(c/2 + d*x/2)**2
 + 105*a*d) + 210*tan(c/2 + d*x/2)**2/(105*a*d*tan(c/2 + d*x/2)**14 + 735*a*d*tan(c/2 + d*x/2)**12 + 2205*a*d*
tan(c/2 + d*x/2)**10 + 3675*a*d*tan(c/2 + d*x/2)**8 + 3675*a*d*tan(c/2 + d*x/2)**6 + 2205*a*d*tan(c/2 + d*x/2)
**4 + 735*a*d*tan(c/2 + d*x/2)**2 + 105*a*d), Ne(d, 0)), (x*sin(c)*cos(c)**7/(a*sin(c) + a), True))

________________________________________________________________________________________